

"Doing statistics is like doing crosswords except that one cannot know for sure whether one has found the solution."

– John Tukey

The Annals of Statistics 2002, Vol. 30, No. 6, 1535–1575

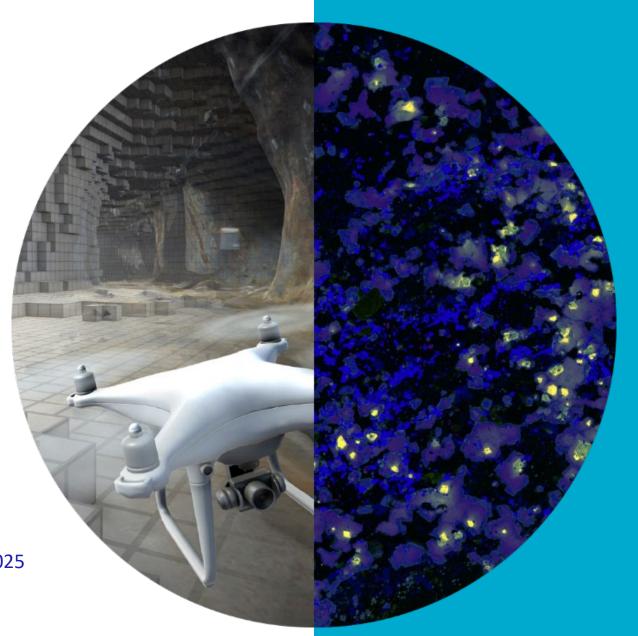
JOHN W. TUKEY: HIS LIFE AND PROFESSIONAL CONTRIBUTIONS¹

BY DAVID R. BRILLINGER

On Finding
Good
Experiments
(in life science)

Cheng Soon Ong, Data61 and ANU 25 November 2025

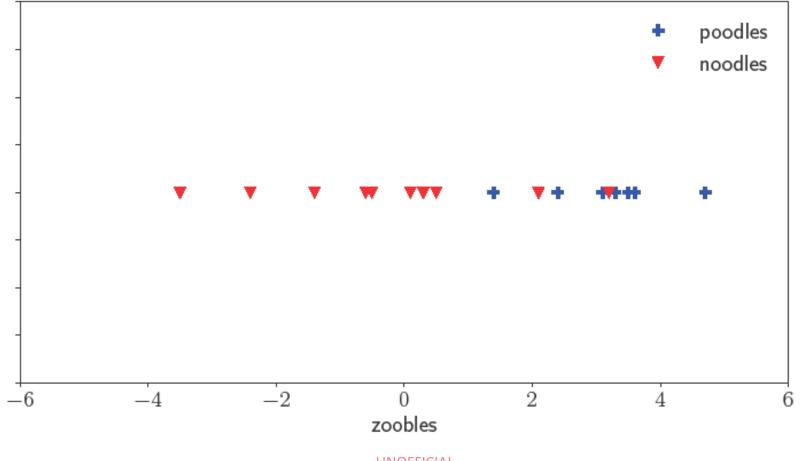
Biometrics in the Bush Capital 2025 International Biometric Society



I would like to acknowledge the Ngunnawal people, the traditional custodians whose ancestral lands we're meeting on today, and pay my respect to their Elders past and present.

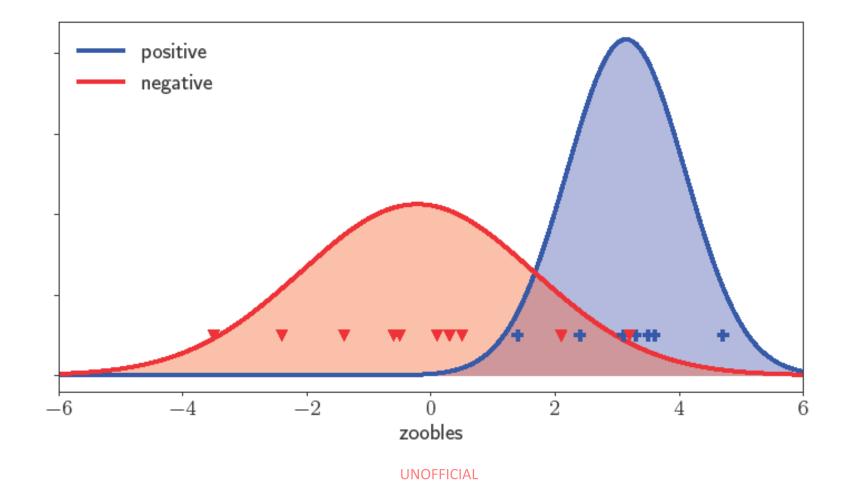
Given some data

Classify blue plus vs red triangles, based on features



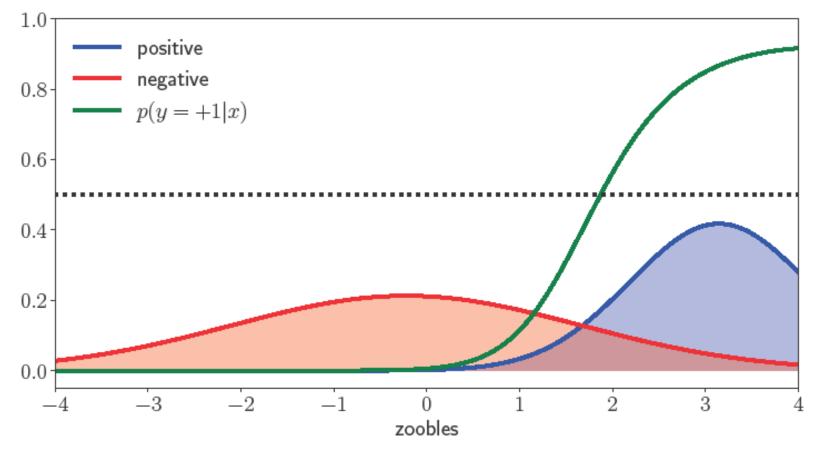
Fit a model to data

Estimate a Gaussian for each class conditional



Build a classifier

Compute the posterior probability of blue plus



What is machine learning?

- Mostly about prediction
 - Examples/covariates/features
 - Labels/annotations/target variables

$$x_1, \ldots, x_n \sim \mathcal{X}$$

 $y_1, \ldots, y_n \sim \mathcal{Y}$

Predictor

$$f_{\theta}(x): \mathcal{X} \to \mathcal{Y}$$

• Estimate the best predictor = training = $\min_{\theta} \ell(f_{\theta})$ (given loss)

Finding good experiments

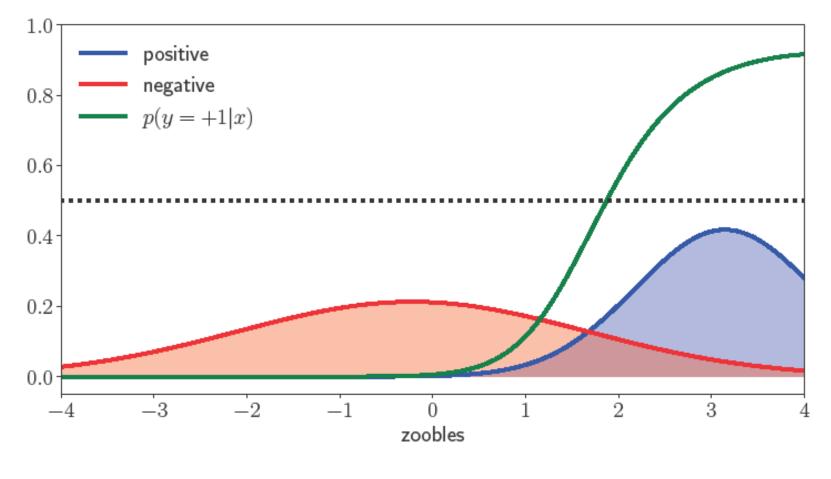
What is an **experiment**?

How do we find good experiments?

What do we mean by "good"?

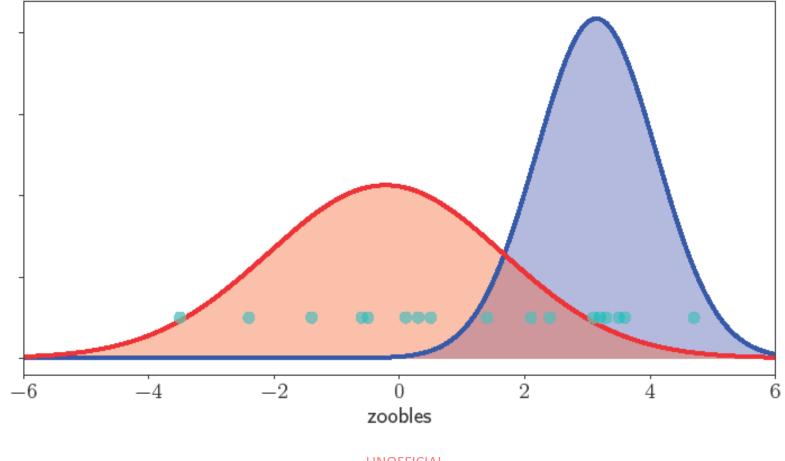
Recall what is a predictor

Compute the posterior probability of blue plus



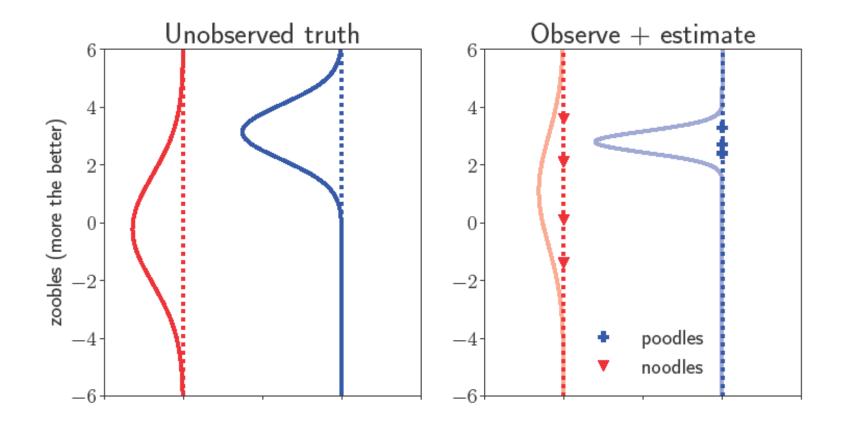
Active Learning

Want to build a predictor without paying for a lot of labels

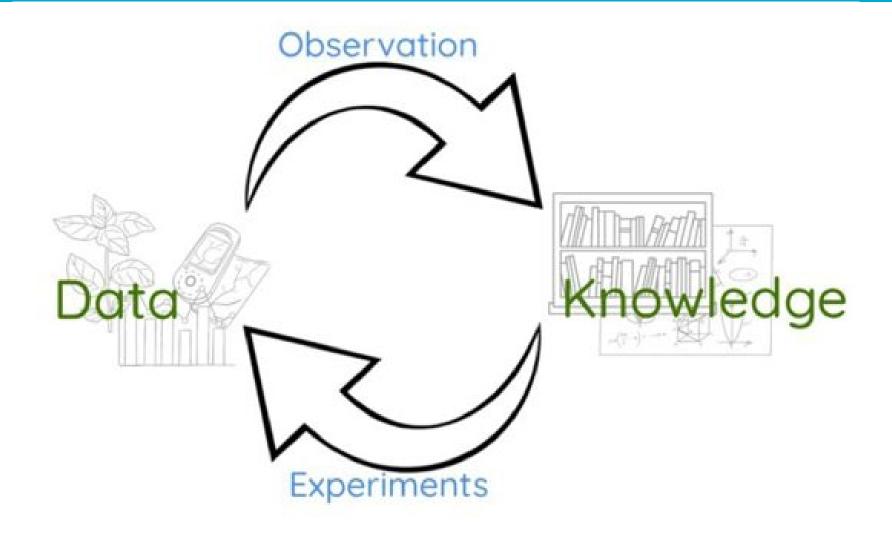


Bandits / Bayesian optimisation

Want to maximise the outcome of different choices



The scientific method



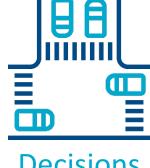
Using a predictor to adaptively choose data

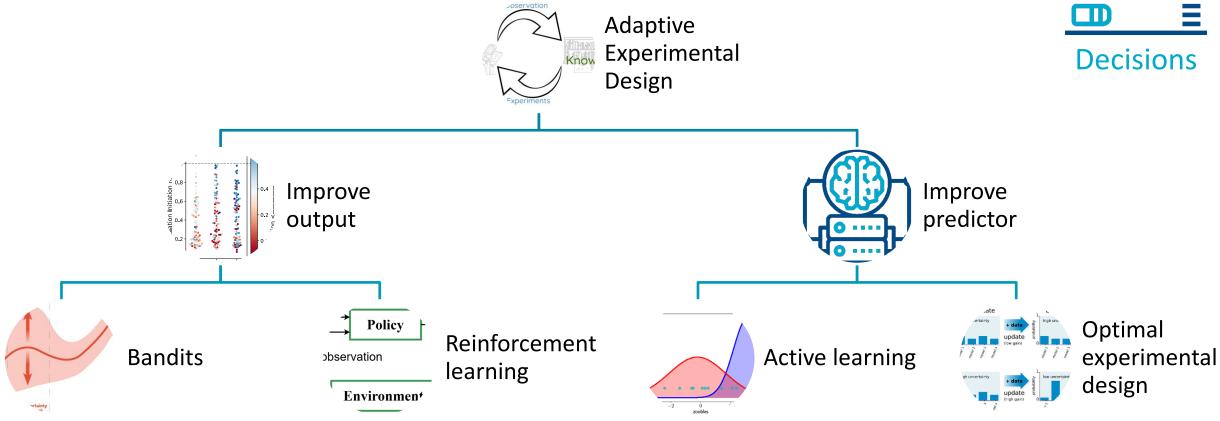
Given a predictor

$$f_{\theta}(x): \mathcal{X} \to \mathcal{Y}$$

- We could collect data (perform an experiment) to:
 - Bandits Improve the output of the predictor, that is better $f(\boldsymbol{x})$
 - Active Learning Improve the predictor/model itself, that is better heta

Decision making

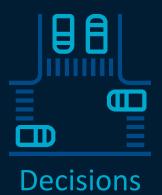




- https://researchoutreach.org/articles/adaptive-experiments-machine-learning-help-scientific-discovery/
- Chades, Blau, Ong, Machine Learning for Biological Design, Chap 19, Synthetic Biology (2nd ed), 2024

 UNOFFICIAL

Three messages



What is an experiment?

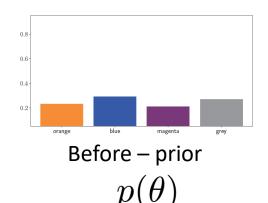
How do we find good experiments?

What do we mean by "good"?

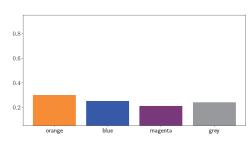
Information gain – ecological modelling

 Find experiments to improve the model's parameters

Imagine parameters have only 4 states

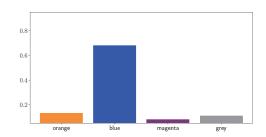


Take a sample ${f D}$



Uninformative experiment

$$p(\theta|\mathbf{D})$$



Informative experiment

$$\mathbb{E}_{\mathbf{D} \sim \mathcal{X}, \mathcal{Y}}$$

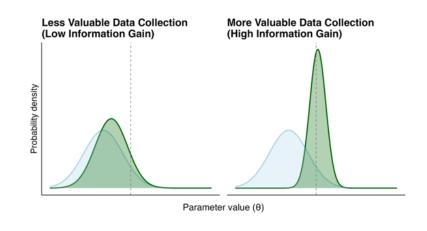
Don't know which data we're going to get

$$D[p(\theta|\mathbf{D})]$$

Difference between posterior and prior

Species distribution model

- African lovegrass
- Beta-Bernoulli presence model



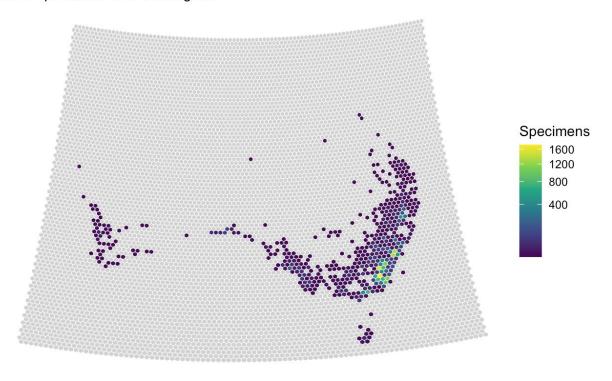
Prior - Posterior

Owen Forbes

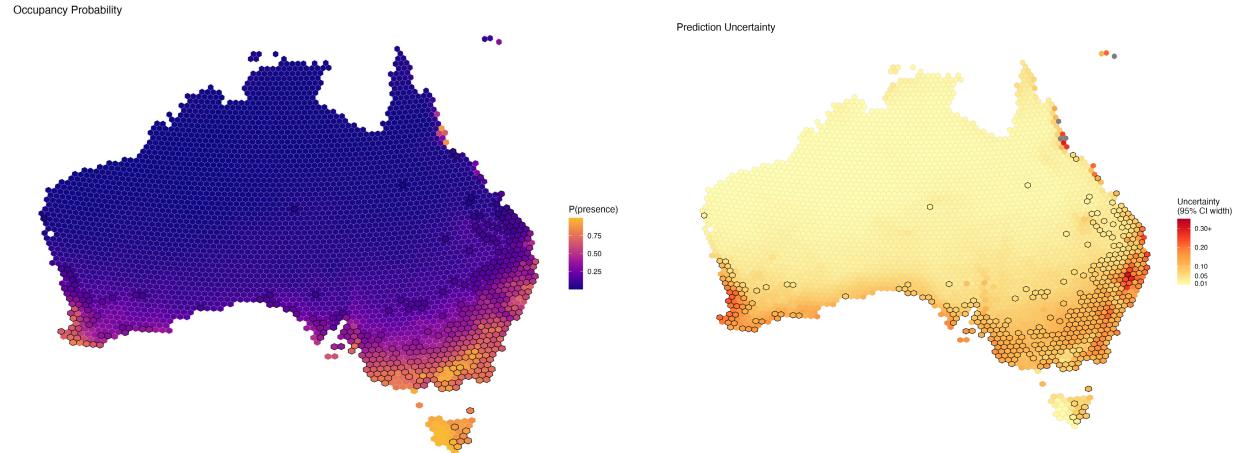
Pete Thrall

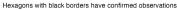
Andrew Young

Eragrostis curvula (African Lovegrass) Distribution - 50km Hexagons 23249 specimens in 474 hexagons



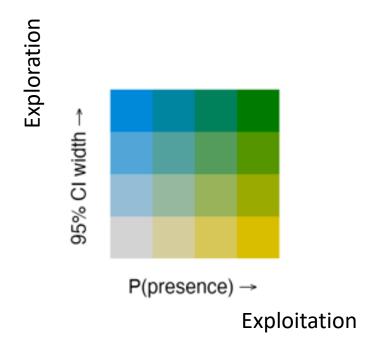
Prediction and uncertainty



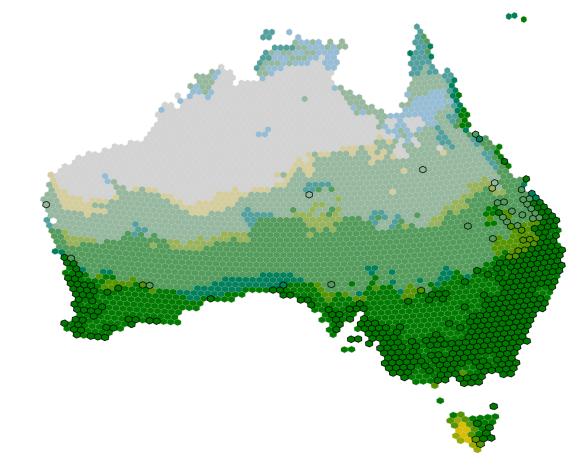


Prediction and uncertainty

Unify into one plot



Combined: Estimate + Uncertainty

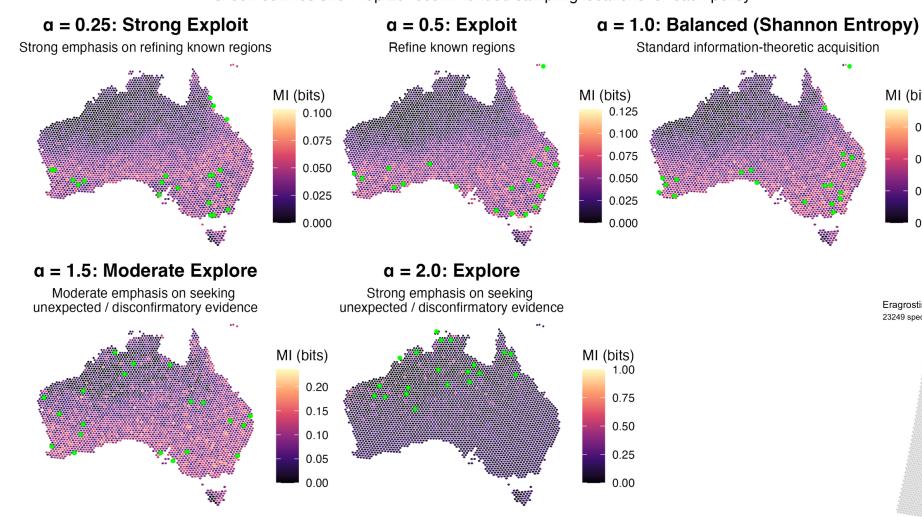




Exploration - exploitation

Fig 2: Acquisition Function Recommendations by Alpha for Renyi Entropy Search

Green outlines show top 20 recommended sampling locations for each policy



Eragrostis curvula (African Lovegrass) Distribution - 50km Hexagons 23249 specimens in 474 hexagons

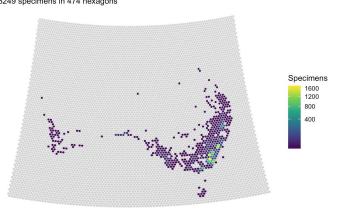
MI (bits)

0.15

0.10

0.05

0.00



Higher gene expression

- Ribosomal binding site
- Given 6 letters of a genome, predict gene expression
- Sequence kernel
- Use Bayesian optimisation (GP-BUCB, kriging believer)
- 4 experimental cycles
- 35% stronger than engineered sequence

Mengyan Zhang, Oxford

Huw Hayman Zumpe, Nourish

ACS Synthetic Biology Volume 11, Issue 7

July 15, 2022 Pages 2221-2526

ARTICI

Machine Learning Guided Batched Design of a Bacterial Ribosome Binding Site

View article page

Mengyan Zhang, Maciej Bartosz Holowko, Huw Hayman Zumpe and Cheng Soon Ong

77 CITE

© 2022 The Authors. Published by American Chemical Society https://doi.org/10.1021/acssynbio.2c00015 ☑

CSIRO's BioFoundry

• Engineering biology:

is the set of methods for designing, building, and testing engineered biological systems

Hafna Ahmed

Chie Ishitate

Candice Jones MPI Marburg

Adrian Marsh

Robert Speight

What's the objective?

Design Ribosome Binding Site (RBS) sequences

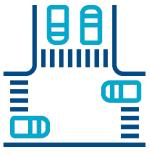
Optimize the protein expression level.

RBS sequence	Normalized* Protein Expression Level
TTTAAGA <mark>GTTATA</mark> TATACAT	1.58
TTTAAGA <mark>ATATGC</mark> TATACAT	1.42
TTTAAGACTCGGATATACAT	0.14
TTTAAGAGTTTTTTATACAT	2.88

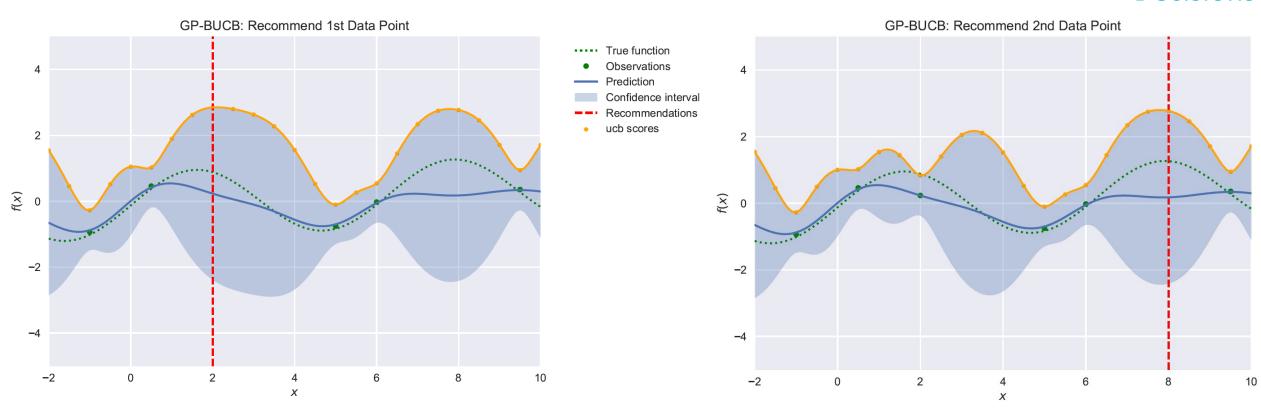
Core part (design space): 4^6 = 4096 possibilities in total

Upper confidence bound

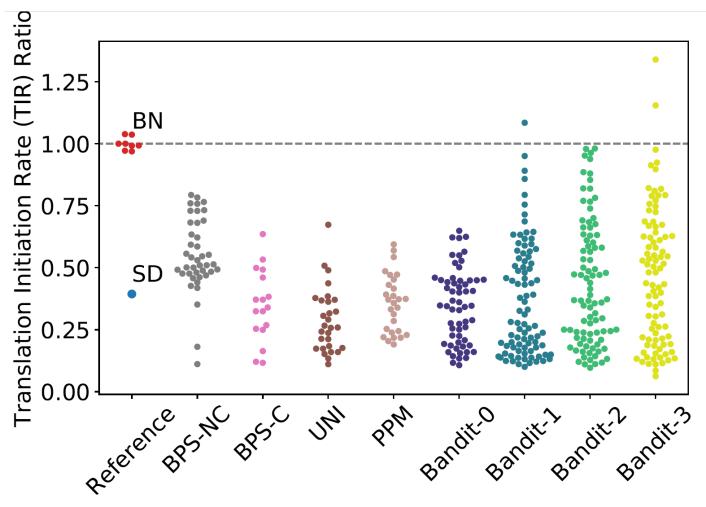
A particular bandit algorithm



Decisions



ML recommends good designs



TTTAAGANNNNNNTATACATATG -20 **Feature** -1

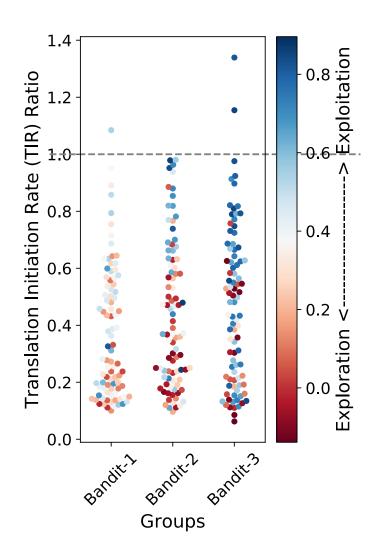
- Hard to search by evolving sequences
- 4 experimental cycles
- 35% stronger than engineered sequence

Zhang, Holowko, Hayman Zumpe, and Ong, Machine learning guided design for ribosome binding site. ACS Synthetic Biology, 2022

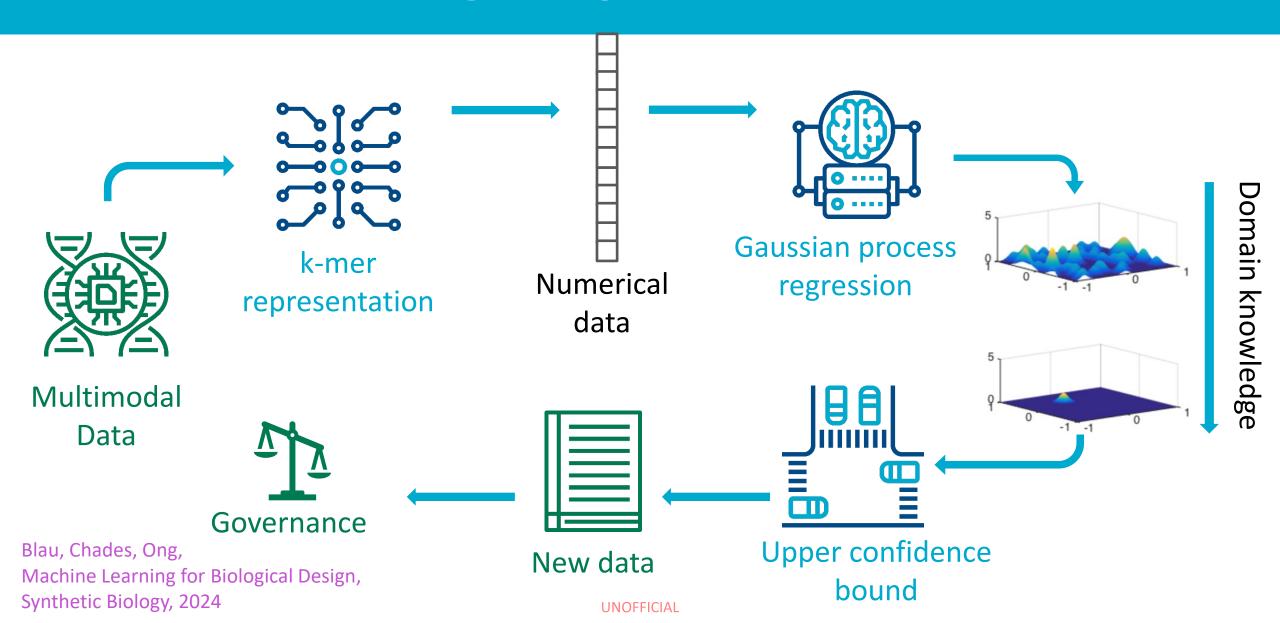
Exploration-Exploitation Trade-off

- Exploration: unknown (untested) RBS design space with potentially high label
- Exploitation: querying areas that are predicted to give relatively high labels.

Which genome should we grow?



Machine learning for genomics



Work in progress: find plastic degrading enzymes

Enzyme – a short protein sequence, acts as a catalyst for a chemical reaction. Represented as a string of amino acid letters but has a 3D form.

Aim: we want to be able to find useful enzymes that can digest plastic

Challenge – search space is **VAST**

Atoms in universe: 1080

Seconds since Big Bang: 10¹⁷

ppEST: Aryl esterase

MGTLLVVGDSISAAFGLDSRQGWVALLEKRLSEEGFEHSVVNASISGDTSAGGAARLSALLAEHKPELVIIELGGNDGL RGQPPAQLQQNLASMVEQSQQAGAKVLLLGMKLPPNYGVRYTTAFAQVFTDLAEQKQVSLVPFFLEGVGGVPGM MQADGIHPAEAAQEILLDNVWPTLKPML

20²⁰⁰ possible (substitution) variants!

Asiri Wijesinghe

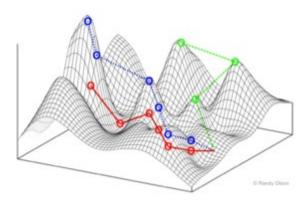
Allen Zhu

Lu Zhang

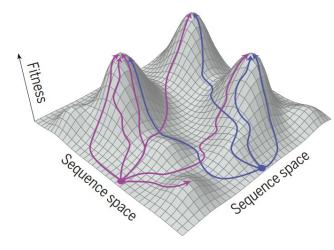
Asher Bender

Fitness landscape

- A metaphor in evolutionary biology
- Each of the horizontal axes represents some notion of sequence variation
- The vertical axis captures some property of interest (so-called fitness)
- Open question how to represent



Wikipedia: Sewall Wright



Papkou et al., Science 382, 901 (2023)

Low

High

Our idea: Islands of fitness

- Desiderata: want to find only "fit" sequences
- Intuition: Many sequences are not viable, and we cannot measure their fitness

Aerial View of Seventy Islands, Micronesia, Palau

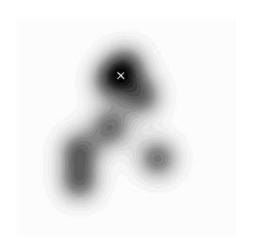
by Reinhard Dirscherl

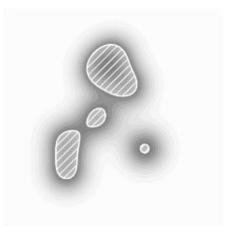
Active Generation

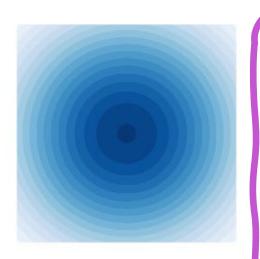
• Goal: We want to generate from a (conditional) probability density $p(x \mid y > \tau)$

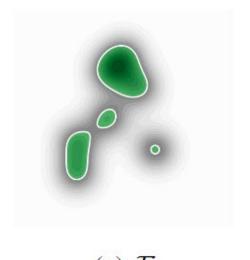
Where x is the space of sequences and y is the fitness value τ is a parameter that identifies "fit" sequences

Variational Search Distributions









(a) $\operatorname{argmax}_{\mathbf{x}} y(\mathbf{x})$

 $\mathbf{x}, y(\mathbf{x})$ (b) \mathcal{S}

(c) $p(\mathbf{x})$

(d) $p(\mathbf{x}|y > \tau)$

2(11/9 / 1)

(e) \mathcal{F}

Find the fittest

Set of viable sequences

Prior

UNOFFICIAL

Posterior

Ground truth

Steinberg, Oliveira, Ong, Bonilla, Variational Search Distributions, ICLR 2025 https://arxiv.org/abs/2409.06142

Dan Steinberg

Rafael Oliveira

IIIII

Solving active generation

- Frame online black box optimization
 as sequential learning of conditional generation
- In each round of the sequence, there are two steps

Fit a binary classifier (CPE), $z := \mathbf{1}[y > \tau]$ indicates "good"

$$\pi_{\theta}(\mathbf{x}) \approx p(z=1|\mathbf{x})$$

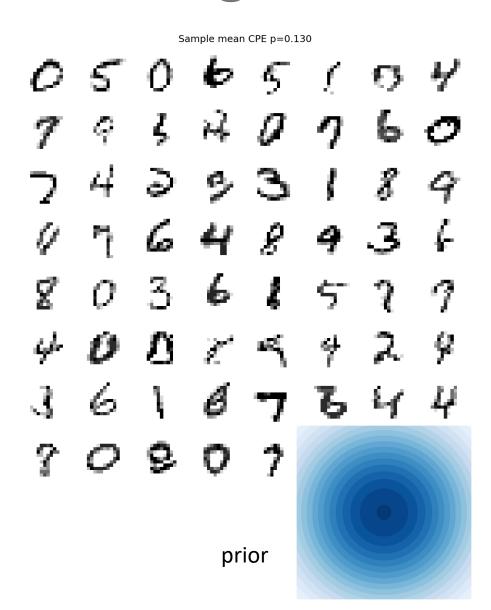
Update the generative model

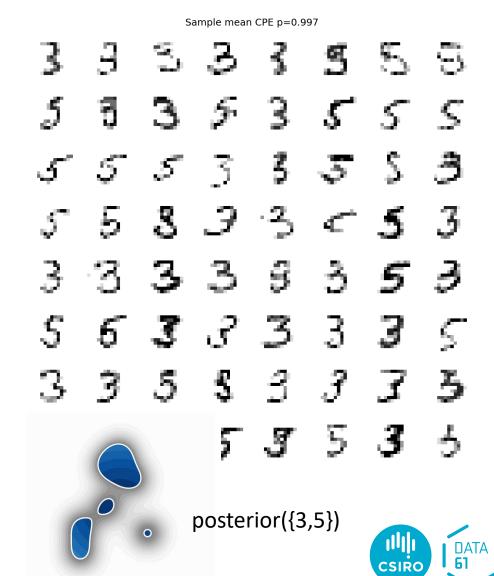
$$\phi_t^* \leftarrow \operatorname*{argmax} \mathcal{L}_{\text{ELBO}}(\phi, \theta_t^*)$$

• We choose to maximise the evidence lower bound (variational inference)

$$\mathcal{L}_{\text{ELBO}}(\phi, \theta) = \mathbb{E}_{q_{\phi}(\mathbf{x})}[\log \pi_{\theta}(\mathbf{x})] - \mathbb{D}_{\text{KL}}[q_{\phi}(\mathbf{x}) || p(\mathbf{x} | \mathcal{D}_0)]$$

Generating unrolled images





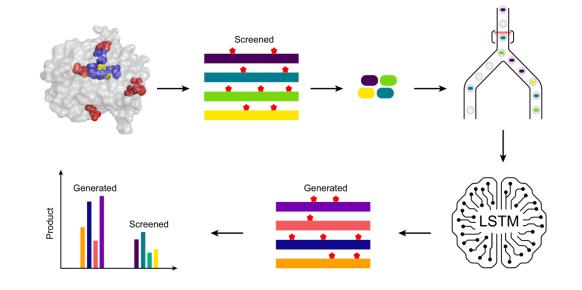
Early results - peroxygenases

 Peroxygenase is a catalyst that inserts an oxygen atom

Catalyst
$$H_2O_2$$
 $+$ $(S)-2$ $+$ 3

- Want to engineer specificity into unspecific peroxygenase
- Enzyme library is screened using microfluidic sorting

 Active generation consistently outperformed direct selection from the same screening data



Ultrahigh throughput screening to train generative protein models for engineering specificity into unspecific peroxygenases Nair, Steinberg, et. al.

Active Generation

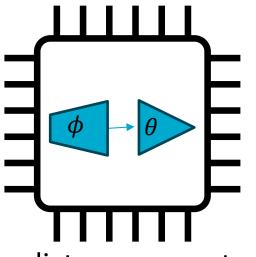
Active generation: find best ϕ^* for generating "good" (or best) \mathbf{x}

MKTTTLLFLVGALTQ	1.2
MKTTTLLFLVGTLTQ	3.6
MKTTTLLFLVGALTT	0.3

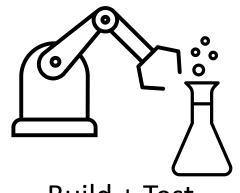
Labelled Data

$$\pi_{\theta}(\mathbf{x}) \approx p(z=1|\mathbf{x})$$

$$\phi_t^* \leftarrow \operatorname*{argmax} \mathcal{L}_{\text{ELBO}}(\phi, \theta_t^*)$$



Predictor + generator learning

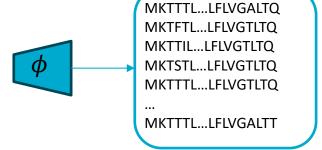


Build + Test

Can "select" from a **vast number** of enzymes (e.g. 20²⁰⁰), since they are **generated**

** we are **not** doing latent space optimisation!

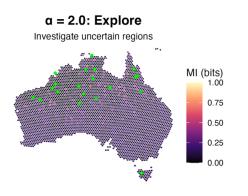
Generate good candidates instead of selecting from a list

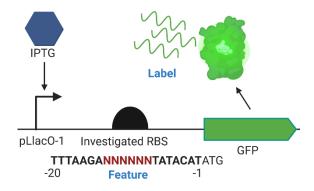


Unlabelled data generation, design is generation

Data is measured for a reason

Consider the set of all possible things to measure





- Think of the predictor output as producing features
 - Each calculated feature demonstrates the "importance" of an experiment
 - Can get multiple features by using different predictors
 - Estimate predictive uncertainty to inform decisions
- Adaptively choose the next thing to measure by maximising an objective (machine learning is about defining good objective functions)

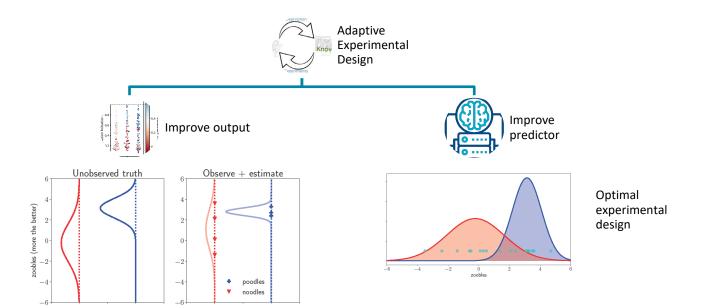
On finding good experiments

What is an experiment?

How do we find good experiments?

What do we mean by good?

Better measured values or better models

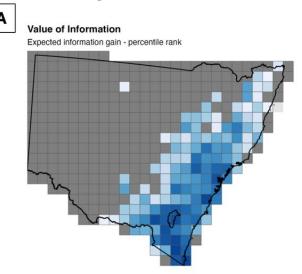


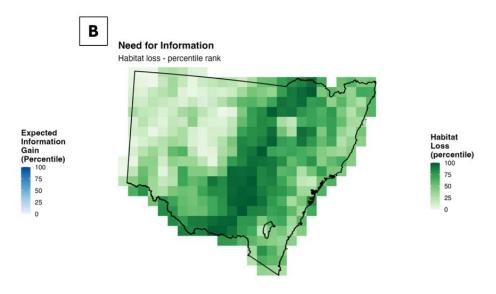
Recall that we can use a machine learning predictor in two ways:

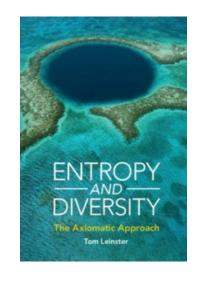
- 1. The parameters of the model
- 2. The output values on a test set

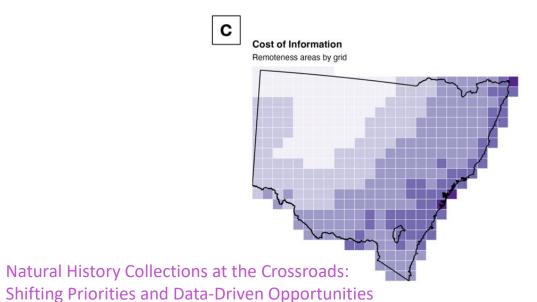
Value, need, cost

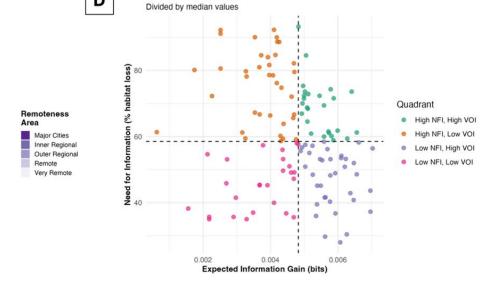
Forbes, Thrall, Young, Ong, Ecology Letters, vol 28, no 8, 2025









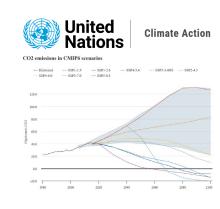


VOI vs NFI Quadrant Analysis

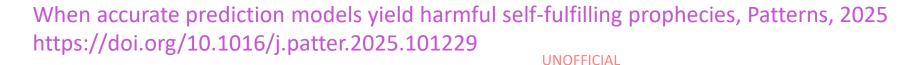
ML is **not only** about predictions

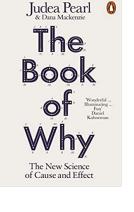
Predictions vs Decisions vs Actions





	Weather	Traffic	Climate
Predictions	Will it rain tomorrow?	Jam on M1?	Risk in 2050?
Decisions	Take umbrella?	Train or taxi?	Plan for net zero
Actions	Does not affect weather	Affects traffic!	Want wrong predictions!





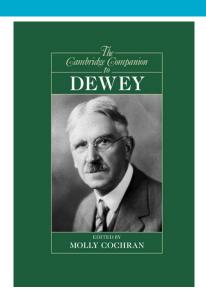
Pragmatism in International Relations

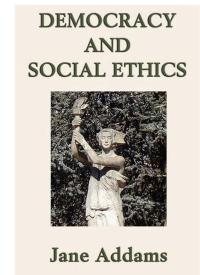
Toni Erskine, ANU

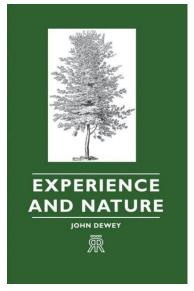
Xueyin Zha, ANU

Need a way to say "good" and "true"

PhD thesis: Normative Truth-Seeking from the Ground Up: Experiential Pathway to Global AI Governance

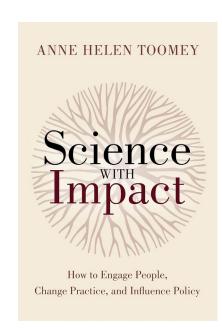






We should learn from each other

- Need more than data science
- How to foster cross disciplinary projects?
- π shaped research teams



IEEE TRANSACTIONS ON TECHNOLOGY AND SOCIETY

Four Compelling Reasons to Urgently Integrate AI
Development With Humanities, Social and
Economics Sciences

Iadine Chades[®], Melanie McGrath[®], Erin Bohensky, Lucy Carter[®], Rebecca Coates[®], Ben Harwood, Md Zahidul Islam, Sevvandi Kandanaarachchi[®], Cheng Soon Ong[®], Andrew Reeson[®], Samantha Stone-Jovicich[®], Cécile Paris[®], Mitchell Scovell[®], Kirsty Wissing[®], and David M. Douglas[®]

Position: We need responsible, application-driven (RAD) AI research

Opportunities and Challenges in Designing Genomic Sequences

Sarah Hartman ¹ Cheng Soon Ong ²³ Julia Powles ⁴⁵ Petra Kuhnert ¹

On Finding Good Experiments

https://ong-home.my

@cheng@masto.ai
@ml4x.bsky.social
chengsoon.ong@anu.edu.au

What is an experiment?

How do we find good experiments?

What do we mean by good?