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Given some data
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* Classify blue plus vs red triangles, based on features
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Fit a model to data

e Estimate a Gaussian for each class conditional
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Build a classifier

* Compute the posterior probability of blue plus
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What is machine learning?

* Mostly about prediction

e Examples/covariates/features
* Labels/annotations/target variables Yly e oo s Yp ~ V

xl,...,.’L’nNX

 Predictor

fg(.’li‘):%—))f

* Estimate the best predictor = training = inIl E(f@)

(given loss) %
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Recall what is a predictor

* Compute the posterior probability of blue plus
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Active Learning

e Want to build a predictor without paying for a lot of labels

zoobles
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Bandits / Bayesian optimisation

 \WWant to maximise the outcome of different choices

; Unobserved truth . Observe + estimate
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The scientific method

Observation

T+ = --l'll.:
| ‘I."_::-I Il

Data Knﬂwledge

Experiments
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Using a predictor to adaptively choose data
* Given a predictor

f@(.’L‘):X%y

* We could collect data (perform an experiment) to:

* Bandits
Improve the output of the predictor, that is better f ()

* Active Learning
Improve the predictor/model itself, that is better @

@ I DATAI
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Decision making _JlﬁumL
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* https://researchoutreach.org/articles/adaptive-experiments-machine-learning-help-scientific-discovery/ %I/
61

* Chades, Blau, Ong, Machine Learning for Biological Design, Chap 19, Synthetic Biology (2" ed), 2024 e
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Information gain — ecological modelling

* Find experiments to improve
the model’s parameters

aaaaaaa

Unlnformatlve experiment

p(0|D)

MagIne PArAMELers . e I O
have only 4 states
Before — prior Take a sample [) I

ip~x,y D[ p@D) | p@O) ]

Don’t know which data Difference between posterior and prior

we’re going to get
g0 to & %IDATA

Informative experiment




Species distribution model|

* African lovegrass

* Beta-Bernoulli presence model
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Owen Forbes

Less Valuable Data Collection
(Low Information Gain)

More Valuable Data Collection
(High Information Gain)

Parameter value (8)

Pete Thrall Andrew Young

Prior — Posterior

Eragrostis curvula (African Lovegrass) Distribution - 50km Hexagons
23249 specimens in 474 hexagons
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Prediction and uncertainty

Occupancy Probability

Prediction Uncertainty

P(presence) £
0.75
0.50
0.25
00 ®
%@ o & @
o

®e

Uncertainty
(95% Cl width)

I 0.30+
0.20
0.10

0.05
0.01

Hexagons with black borders have confirmed observations
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Prediction and uncertainty

Combined: Estimate + Uncertainty

* Unify into one plot

Exploration

95% CI width —

P(presence) —

Exploitation

Vizumap: an R package for visualising uncertainty in spatial data 7~
Journal of Open Source Software, 6(59), 2409, 2021 I EiATA
N7
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Exploration - exploitation

Fig 2: Acquisition Function Recommendations by Alpha for Renyi Entropy Search

Green outlines show top 20 recommended sampling locations for each policy

a = 0.25: Strong Exploit a = 0.5: Exploit a = 1.0: Balanced (Shannon Entropy)
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Higher gene expression

* Ribosomal binding site

* Given 6 letters of a genome,
predict gene expression E——

° - ‘ A 9 ¢ uly15,2022
Sequence kernel ) ot ¥ o
~ Samsara Eco Yy

* Use Bayesian optimisation
(G P_ B U C B’ krigi n g be I ieve r) Machine Learning Guided Batched Design of

* 4 experimental cycles

Mengyan Zhang, Maciej Bartosz Holowko, Huw Hayman

* 35% stronger than engineered : ;
sequence |

© 2022 The Authors. Published by American Chemical Society

i.org/10.1021/acssynbio.2c00015 [

Huw Hayman Zumpe,
Nourish




@ CSIRO’s BioFoundry

* Engineering biology:
is the set of methods for designing, building, and
testing engineered biological systems

L/ R

rﬂf't ’

Hafna Ahmed U‘A,

Chie Ishitate Candice Jones
MPI Marburg

Adrian Marsh

Robert Speight

https://research.csiro.au/aeb



@ What's the objective?

Design Ribosome Binding Site (RBS) mmmm) Optimize the protein expression level.

seguences
RBS sequence Normalized™ Protein
Expression Level
TTTAAGAGTTATATATACAT 1.58
TTTAAGAATATGCTATACAT 1.42
TTTAAGACTCGGATATACAT 0.14
TTTAAGAGTTTTTTATACAT 2.88

Core part (design space): 4° = 4096 possibilities in total )

* zero mean and unit variance normalization z = —
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@ Upper confidence bound

A particular bandit algorithm

GP-BUCB: Recommend 1st Data Point

----- True function
® Observations 4
= Prediction
Confidence interval
== Recommendations
= ucb scores

X —— L ————

https://distill.pub/2020/bayesian-optimization/
UNOFFICIAL

GP-BUCB: Recommend 2nd Data Point

Decisions

00— o
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= e TTTAAGANNNNNNTATACATATG
E o -20 Feature -1
@ 1.00 f-sfe-=mn=nmmmmmmmmmmmmmmm e e o--mmmgpmmmmmn ]
m ® o9
< 0.75- 5 LG * Hard to search by
3 x fo e B evolving sequences
20501 sp < % RN S .
- -, k. * 4 experimental cycles
2 0.251 . S P
© : - 4 %, * 35% stronger than
s 0.00- . . . . . ‘
5 e S o o oo engineered sequence
&S &
Qg‘/\‘?} <§ ¥ ¥ ¥

Zhang, Holowko, Hayman Zumpe, and Ong,

Machine learning guided design for ribosome binding site.
ACS Synthetic Biology, 2022
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@ Exploration-Exploitation Trade-off

1.4
C
. . RS
e Exploration: unknown (untested) RBS design 3 0.8 %5
. . . © et
space with potentially high label o °
o X
* Exploitation: querying areas that are predicted S I 7 0.6
to give relatively high labels. 5 3 §
S .; ? 0.4 |
] - *» i
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Machine learning for genomics

°\I(‘° — O —
q_o o_p [
0=—0 O 0—0 —
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emer n Gaussian process QO
: Numerical regression >
representation a)
data o
; 2
(g»)
Multimodal _J L QJ’1 o
Data TA o i N ®
Governance -
Blau, Chades, Ong, New data Upper confidence

Machine Learning for Biological Design,

Synthetic Biology, 2024 NOREICIAL bound



@ Work in progress: find plastic degrading enzymes

PpEST: Aryl esterase

MGTLLVVGDSISAAFGLDSRQGWVALLEKRLSEEGFEHSVVNASISGDTSAGGAARLSALLAEHKPELVIIELGGNDGL

Enzyme — a short protein sequence, PP AGL QONLASHIVESOOACAKVLLLONIPoNYOVRYTTAPAGUFTOLAFQKAVS VPFLEGVGBY P
acts as a catalyst for a chemical HPeERATEOTI

reaction. Represented as a string of
amino acid letters but has a 3D form.

Aim: we want to be able to find useful
enzymes that can digest plastic

20290 possible (substitution) variants!
Challenge — search space is VAST

Atoms in universe: 1080 &\\1 > 8
\

¥ L% 1!

: : . 17
Seconds since Big Bang: 10 Asiri Wijesinghe  Allen Zhu LuZhang Asher Bender
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Fithess landscape

A metaphor in evolutionary biology

* Each of the horizontal axes represents some
notion of sequence variation

* The vertical axis captures some property of
interest (so-called fitness)

* Open question how to represent ¢ R

Fitness N
Low High



Our idea: Islands of fitness

* Desiderata: want to find only “fit” sequences

* Intuition: Many sequences are not viable,
and We CannOt measu re their fitness Aerial View of Seventy Islands, Mi?rovr.\esia, Palau

by Reinhard Dirscherl s 7.
iy
o : u =

Active Generation

* Goal: We want to generate from a (conditional) probability density
px|y>1)
Where x is the space of sequences and y is the fithess value
T is a parameter that identifies “fit” sequences

7~
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Variational Search Distributions

(a) argmax, y(x) (b) S (c) p(x) (©)F
Find the fittest Set of viable Prior Posterior Ground
sequences truth

Steinberg, Oliveira, Ong, Bonilla,
Variational Search Distributions, ICLR 2025

— - /
https://arxiv.org/abs/2409.06142 Dan Steinberg  Rafael Oliveira Edwin Bonilla % B
UNOFFICIAL N~




Solving active generation

* Frame online black box optimization
as sequential learning of conditional generation

* In each round of the sequence, there are two steps
> Fit a binary classifier (CPE), z := 1|y > t] indicates “good”

mo(x) ~ p(z = 1[x)
‘ Update the generative model

¢y < argmax Lgrpo(¢, 6;)
¢

* We choose to maximise the evidence lower bound (variational inference)

Leo(¢,0) = Ey, (x)[log mo(x)] — Drr[ge(x)||p(x[Do))] %
I DATA I



Generating unrolled images
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Early results - peroxygenases

* Peroxygenase is a catalyst
that inserts an oxygen atom

Caralyst

OAO/“

(5)-2

* Want to engineer specificity into unspecific peroxygenase

* Enzyme library is screened
using microfluidic sorting

* Active generation consistently
outperformed direct selection
from the same screening data

Ultrahigh throughput screening to train generative protein models for engineering specificity into unspecific peroxygenases / /‘.

Nair, Steinberg, et. al.
https://www.biorxiv.org/content/10.1101/2025.11.02.685536v1

oIIozgmes



Can “select” from a vast number of enzymes

ACthe G ene ratl on (e.g. 20°9), since they are generated

Active generation: find best ¢* for generating ** we are not doing latent space optimisation!

“good” (or best) x )
/ \ Generate good candidates instead of
selecting from a list

mKTTTL...LFLVGALTQ \

MKTTTL..LFLVGALTQ | 1.2 MKTFTL...LFLVGTLTQ

MKTTTL..LFLVGTLTQ | 3.6 MKTTIL...LFLVGTLTQ

Predictor + gene rator MKTSTL...LFLVGTLTQ

MKTTTL..LFLVGALTT | 0.3 MKTTTL...LFLVGTLTQ
learning

MKTTTL...LFLVGALTT
Labelled . J
Data Unlabelled data
mo(x) ~ p(z = 1]x) \ 4/ generation,

OF + argmax Leigo(0, 0] design is generation
¢ Build + Test

Steinberg, Wijesinghe, Oliveira, Koniusz, Ong, Bonilla DATA
Amortized Active Generation of Pareto Sets, NeurlPS 2025 I



Data is measured for a reason

* Consider the set of all possible things to measure

a = 2.0: Explore

Investigate uncertain regions . Vl/y\l//]\/\
- & IPTG 4%y
l Label
— - \
pLlacO-1  Investigated RBS FP

TTTAAGANNNNNNTATACATATG
-20 Feature -1

* Think of the predictor output as producing features
e Each calculated feature demonstrates the “importance” of an experiment
* Can get multiple features by using different predictors
* Estimate predictive uncertainty to inform decisions

e Adaptively choose the next thing to measure by maximising an objective
(machine learning is about defining good objective functions)
@
N7
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On finding good experiments
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Better measured values or better models

m Adaptive
ey EXperimental
w Design
| % BAYESIAN
f 1 OPTIMIZATION
- ROMAN GARNETT

04

U Improve output

£ W ¥
o 3

:
3
A, Bandit R
t 5 Ob_serve + estim_ate AlgOrltth
: Optimal

§ ; experimental
: design
f
E 4
%

Recall that we can use a machine
learning predictor in two ways:
1. The parameters of the model
2. The output values on a test set

'

I OATA
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Value, need, cost

Value of Information Need for Information
Expected information gain - percentile rank Habitat loss - percentile rank

ENTROPY

el e

DIVERSITY

Tom Leinstor

Expected
Informatien ro’:::“
Gain

(Percentile) (pel':;eonlile)

100
75
50

25
0

c D VOI vs NFI Quadrant Analysis
Divided by median values

Cost of Information

Remoteness areas by grid 8 ° ¢
L ] 1
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e
'§ . . o\ e .0 °
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o L]
; L4 LR} : L ] .
S [ ] ' L] ..
Z 40 ° 1 e @
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1
1
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Natural History Collections at the Crossroads:
Shifting Priorities and Data-Driven Opportunities ... I DATA
Forbes, Thrall, Young, Ong, Ecology Letters, vol 28, no 8, 2025 \ P
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Judea Pearl @

ML is not only about predictions B{E‘:k

of =
Predictions vs Decisions vs Actions Wh‘y
The NwSccncc
of Causc and Effect
A, AutenCovrmnen @) H';'tt.ﬁﬂs cimate Acton

Thu 5 Oct _',f: 9°C 16°C
0

Possible rainfall: 0to 6 mm Chance of any rain: 80% HINEANEN
Fri 6 Oct 1/: 9°C 15°C
K

Possible rainfall: 0to 1 mm Chance of any rain: 70% BEREEEECO0

SI7OCT(@ 7°C 16°C

Predictions  Will it rain tomorrow? Jam on M1°? Risk in 20507

Decisions Take umbrella? Train or taxi? Plan for net zero

Actions Does not affect weather  Affects traffic! Want wrong predictions!
When accurate prediction models yield harmful self-fulfilling prophecies, Patterns, 2025 | DATA
https://doi.org/10.1016/j.patter.2025.101229
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Pragmatism in International Relations

Toni Erskine, ANU

Xueyin Zha, ANU
DEMOCRACY

AND
SOCIAL ETHICS

* Need a way to say “good” and “true”

EXPERIENCE
AND NATURE

PhD thesis: Normative Truth-Seeking from the Ground Up:
Experiential Pathway to Global Al Governance

UNOFFICIAL



ANNE HELEN TOOMEY

We should learn from each other

* Need more than data science Science

o . Impact
* How to foster cross disciplinary projects? P

. n h d h t How to Engage People,
S a p e re S e a rc e a I I l S Change Practice, and Influence Policy

IEEE TRANSACTIONS ON TECHNOLOGY AND SOCIETY

Four Compelling Reasons to Urgently Integrate Al
Development With Humanities, Social and
Economics Sciences

Iadine Chades™, Melanie McGrath™, Erin Bohensky, Lucy Carter™, Rebecca Coates™, Ben Harwood,
Md Zahidul Islam, Sevvandi Kandanaarachchi*, Cheng Soon Ong™, Andrew Reeson™,
Samantha Stone-Jovicich™, Cécile Paris*, Mitchell Scovell™, Kirsty Wissing"”, and David M. Douglas

Position: We need responsible, application-driven (RAD) Al research

. . .. . Sarah Hartman' Cheng Soon Ong?® Julia Powles*” Petra Kuhnert'
Opportunities and Challenges in Designing Genomic Sequences

Mengyan Zhang'? Cheng Soon Ong 2! %




https://ong-home.my
‘ | DATA |

@cheng@masto.ai
@ml4x.bsky.social

On Finding Good Experiments chengsoon ang@snu.cd.ay
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